Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte, um die tatsächlichen Datenpunkte. Moving Averages Stuff Motiviert per E-Mail von Robert B. Ich erhalte diese E-Mail fragen über die Hull Moving Average (HMA) und. Und du hast noch nie davon gehört. Uh. Stimmt. In der Tat, wenn ich gegoogelt entdeckte ich viele gleitende Durchschnitte, die Id noch nie gehört, wie: Zero Lag Exponential Moving Average Wilder Gleitender Durchschnitt Least Square Gleitender Durchschnitt Dreieckig Gleitender Durchschnitt Adaptiver Gleitender Durchschnitt Jurik Gleitender Durchschnitt. Also dachte ich wed reden über bewegte Durchschnitte und. Havent Sie getan, dass vor, wie hier und hier und hier und hier und. Ja, ja, aber das war, bevor ich von all diesen anderen bewegenden Durchschnitten wusste. Tatsächlich waren die einzigen, mit denen ich spielte, diese, wobei P 1. P 2. P n die letzten n Aktienkurse sind (wobei P n der jüngste ist). Ein einfacher gleitender Mittelwert (SMA) (P 1 P 2, P n) K mit K n. Gewichteter gleitender Mittelwert (WMA) (P 1 2 P 2 3 P 3 n P n) K, wobei K (12 n) n (n 1) 2 ist. Exponential Moving Average (EMA) (P n 945 P n-1 945 2 P n-2 945 3 P n-3) K wobei K 1 945945 2 ist. 1 (1-945). Whoa Ive nie gesehen, dass EMA Formel vor. Ich habe immer thoguht es war. Yeah, seine normalerweise anders geschrieben, aber ich wollte zeigen, dass diese drei ähnliche Rezepte haben. (Siehe das EMA-Material hier und hier.) Tatsächlich sehen sie alle folgendermaßen aus: Wenn alle Ps gleich sind, z. B. Po, dann ist der gleitende Durchschnitt gleich Po. Und das ist der Weg, den jeder sich selbst respektierende Durchschnitt verhalten sollte. Also, was ist am besten definieren am besten. Hier sind ein paar bewegte Durchschnitte, die versuchen, eine Reihe von Aktienkursen, die in einer sinusoidalen Mode variieren verfolgen: Aktienkurse, die eine Sinuskurve folgen Wo haben Sie eine Aktie wie finden Sie beachten, dass die häufig verwendete gleitende Mittelwerte (SMA, WMA Und EMA) ihr Maximum später als die Sinuskurve erreichen. Thats lag und. Aber was ist mit dem HMA-Kerl. Er sieht ziemlich gut aus, und das ist es, worüber wir sprechen wollen. Tatsächlich. Und was ist das 6 in HMA (6) und ich sehe etwas namens MMA (36) und. Die Geduld. Hull Moving Average Wir beginnen mit der Berechnung des 16-Tage-Weighted Moving Average (WMA) wie folgt: 1 WMA (16) (P 1 2 P 2 3 P 3 16 P n) K mit K 12 16 136. Obwohl es schön ist Und smoooth, itll haben einen lag größer als wed wie: Also schauen wir uns die 8-Tage-WMA an: Ich mag es ja, folgt es den Preisvariationen ganz schön. Aber theres mehr. Während WMA (8) auf neuere Preise schaut, hat es immer noch eine Verzögerung, so dass wir sehen, wie viel die WMA hat sich geändert, wenn von 8-Tage bis 16-Tage. Dieser Unterschied würde so aussehen: In gewissem Sinne gibt dieser Unterschied einige Hinweise darauf, wie sich WMA verändert. (8) - WMA (8) WMA (8) - WMA (16) 2 WMA (8) - WMA (16) addieren wir diese Änderung zu unserer früheren WMA (8). MMA Warum nennen es MMA Ich stottern. Wie auch immer, MMA (16) würde so aussehen: Ill nehmen Sie Geduld. es gibt mehr. Jetzt stellen wir die magische Transformation vor und bekommen. Ta-DUM Das ist Rumpf Ja. Wie ich es verstehe Aber was ist das magische Ritual Nachdem wir eine Serie von MMAs mit dem 8-Tage - und 16-Tage-gewichteten gleitenden Durchschnitt erstellt haben, starren wir aufmerksam auf diese Sequenz von Zahlen. Dann berechnen wir die WMA in den letzten 4 Tagen. Das ergibt den Hull Moving Average, den wir HMA nennen (4). Huh 16 Tage dann 8 Tage dann 4 Tage. Werfen Sie eine Münze zu sehen, wie viele. Sie wählen eine Anzahl von Tagen aus, wie n 16. Dann schauen Sie sich WMA (n) und WMA (n2) an und berechnen MMA 2 WMA (n2) - WMA (n). (In unserem Beispiel, das ist 2 WMA (8) - WMA (16).) Dann berechnen Sie WMA (sqrt (n)) mit nur den letzten sqrt (n) Zahlen aus der MMA-Serie (In unserem Beispiel thatd zu berechnen Ein WMA (4), unter Verwendung der MMA-Reihe.) Und für das lustige SINE Diagramm Howd es tun So wheres das Spreadsheet Im, das noch an ihm arbeitet: MA-stuff. xls Sein interessant, zu sehen, wie die verschiedenen bewegenden Durchschnitte auf Spitzen reagieren: Ist HMA wirklich ein gewichteter gleitender Durchschnitt Nun können wir sehen: Wir haben: MMA 2 WMA (8) - WMA (16) 2 (P 1 2 P 2 3 P 3 8 P n) 36 - (P 1 2 P 2 3 P 3 16 P n) 136 oder MMA 2 (136) - (1136) P 1 2 P 2 8 P 8 - (1136) 9 P 9 10 P 10. 16 P 16 Aus gesundheitlichen Gründen schreibe dies bitte so: (1136) K für K 1, 2, 8 und wk - (1136) K, wobei wk 2 (136) - (1136) K für K 1, 2, 8 und wk - (1136) K ist Für K 9, 10. 16. Dann haben wir das magische Quadratwurzelritual (wobei sqrt (16) 4) (wir erinnern uns, dass P 16 der jüngste Wert ist) HMA die 4-tägige WMA der oben genannten MMAs (W & sub1; P & sub1; w & sub2; P & sub2 ;. (W & sub1; P & sub1; & sub1; P & sub1; & sub2; P & sub1; & sub6; W 16 P 13) 10 (unter Hinweis darauf, dass 1234 10). Huh P 0. P -1. Was. Die MMA (16) verwendet die letzten 16 Tage, zurück zum Preis rufen P 1 an. Wenn wir den 4-Tage-gewogenen Mittelwert von ihnen Thar-MMA berechnen, gut mit gestern s MMA (und das geht zurück 1 Tag vor P 1) und am Tag davor, die MMA geht zurück zu 2 Tage vor P 1 und den Tag Vor, dass. Okay, so dass Sie rufen sie Preise P 0. P -1 etc. etc. Du hast es. Also ein 16-Tage-HMA verwendet tatsächlich Informationen, die zurück geht mehr als 16 Tage, rechts Du hast es. Aber es gibt negative Gewichte für sie alte Preise Ist das legal Der Beweis ist in der. Ja ja. Der Beweis ist im Pudding. Also, was macht die Tabelle so weit es sieht so aus: (Klicken Sie auf das Bild zum herunterladen.) Sie können wählen, eine SINE-Serie oder eine RANDOM Reihe von Aktienkursen. Für letztere, jedes Mal, wenn Sie auf eine Schaltfläche klicken, erhalten Sie eine andere Menge von Preisen. Dann können Sie die Anzahl der Tage: das ist unser n. (Beispielsweise haben wir für unser Beispiel n 16 verwendet.) Wenn Sie sich für die SINE-Serie entscheiden, können Sie Spikes einführen und diese entlang des Diagramms verschieben. so was . Beachten Sie, dass wir mit n 16 und n 36 (im Bild der Tabellenkalkulation) n2 und sqrt (n) beide ganze Zahlen verwenden. Wenn Sie so etwas wie n 15 verwenden, verwendet die Kalkulationstabelle den INT-eger-Teil von n2 und sqrt (n), nämlich 7 und 3. So ist der Hull Moving Average die beste Definition am besten. Was ist mit dem Jurik Durchschnitt ich weiß nichts davon. Es proprietär und du musst zahlen, um es zu benutzen. Jedoch können wir mit gleitenden Durchschnitten spielen. Ein anderer gleitender Durchschnitt Angenommen, anstelle des gewichteten gleitenden Durchschnitts (wobei die Gewichte proportional zu 1, 2, 3 sind). Wir verwenden das magische Hull-Ritual mit dem Exponential Moving Average. Das heißt, wir betrachten: MAg 2 EMA (n2) - EMA (n) MAg Ja, das ist M oving A verage g immick oder M oving A veree g eneralized or M oving A verage g rand or. Oder M oving A verage g ummy Lohnaufmerksamkeit Wir wählen unsere Lieblingszahl von Tagen, wie n 16, und berechnen MAg (n, 945, k) 945 EMA (nk) - (1-945) EMA (n). Wir können mit 945 und k spielen und sehen, was wir bekommen: Zum Beispiel, hier sind ein paar MAgs (wo waren 16 Tage bleiben, aber die Werte von 945 und k): MAg (16) 2 EMA (4) - EMA (16) MAE (16) 1.5 EMA (5) - 0.5 EMA (16) Beachten Sie, dass wir, wenn wir k 3 wählen, nk 163 5.333 erhalten, die wir in einfach und einfach ändern. Warum dont Sie Stick mit Hulls Entscheidungen: 945 2 und k 2 Gute Idee. Mi bekommen diese: MAG (16) 2 EMA (8) - EMA (16) Sieht aus wie die Tabelle mit 945 1,5 und k 3. Es tut, nicht Sie haben goof. Wieder Möglich. Also, was über das Quadrat-Root-Ritual Ich lasse das als Übung. Für Sie Okay, beim Spielen mit dieser MAg Sache finde ich, dass Hulls k 2 ziemlich gut funktioniert. So gut bleiben. Allerdings bekommen wir oft einen hübschen Durchschnitt, wenn wir nur ein kleines Stück der Änderung hinzufügen: EMA (n2) - EMA (n). In der Tat, fügen Sie nur einen Bruchteil 946 dieser Änderung. Dies ergibt: MAg (n, 946) EMA (n2) 946 EMA (n & sub2;) - EMA (n). Das heißt, wählen wir 946 0,5 oder vielleicht nur 946 0,25 oder was auch immer und verwenden Sie: Wenn wir zum Beispiel vergleichen unsere gaggle von gleitenden Durchschnitten, wie sie eine STEP-Funktion verfolgen, erhalten wir diese, wo wir hinzufügen (für MAg) nur 946 12 von der Wechsel. Ja, aber was ist der beste Wert der Beta. Bestimmen Sie am besten: Beachten Sie, dass Beta 1 die Option Hull ist. Außer, dass EMAs anstelle von WMAs verwendet wurden. Und Sie lassen das Quadrat-Wurzel-Ding. Äh, ja. Ich habe es vergessen. Hinweis . Die Kalkulationstabelle ändert sich von Stunde zu Stunde. Es sieht jetzt wie folgt aus Etwas zum Spielen Ich habe mir eine Tabelle, die so aussieht. Klicken Sie auf das Bild zum herunterladen. Sie wählen eine Aktie und klicken Sie auf eine Schaltfläche und erhalten ein Jahr im Wert von Tagespreisen. Sie wählen entweder HMA oder MAg, ändern die Anzahl der Tage und, für MAg, den Parameter, und sehen, wenn Sie KAUFEN VERKAUFEN sollten. Wenn Basierend auf welchen Kriterien Wenn der gleitende Durchschnitt in den letzten 2 Tagen DOWN x von seinem Maximum abweicht, kaufst du. (In dem Beispiel, x 1,0) Wenn seine UP y von seinem Minimum in den letzten 2 Tagen, Sie SELL. (Im Beispiel y 1.5) Sie können die Werte von x und y ändern. Taugt es etwas. Diese Kriterien Ich sagte, es war etwas zu spielen. Theres diese andere Glättung Technik genannt Hodrick-Prescott Filter. Mit Hilfe von Ron McEwan, ist es jetzt in diesem Kalkulationstabelle enthalten: Ist es ein gutes Spiel mit ihm. Sie werden bemerken, dass theres ein Parameter, den Sie in Zelle M3 ändern können. Und kauft und verkauft Signale. How, um mit gleitenden Durchschnitten Handel Ein einfacher gleitender Durchschnitt bietet dem Händler 2 wichtige Stücke von Handelsinformationen. - Der gleitende Durchschnitt kann als Unterstützung oder Widerstand abhängig von der Trend-Der gleitende Durchschnitt kann uns Trend Richtung Einer der am häufigsten verwendete gleitende Durchschnitte ist die 200-Periode Simple Moving Average (SMA) auf einer Tages-Chart. Große Institutionen und professionelle Händler schauen auf diesen gleitenden Durchschnitt als starke technische Unterstützung eines Marktes in einem Aufwärtstrend oder technischen Widerstand in einem Abwärtstrend. Die 200 SMA ist einfach die letzten 200 Tage der Schlusskurse gemittelt. Also, wenn die Preise fallen durch die 200 SMA in einem Aufwärtstrend, das kann zeigen, Schwäche auf dem Markt und dass der Aufwärtstrend kann verlangsamen oder möglicherweise Umkehr. Der SPX500 (ein cfd auf dem SampP500) flirtet und stürzt schließlich auch durch die 200 SMA ab. Dies deutet auf eine Schwäche im Markt und vielleicht eine kürzere Tendenz nach unten hin. Suchen Sie nach den 200 SMA, um Widerstand in die Zukunft zu geben. So können wir dann den Durchschnitt der vergangenen 200 Tage auf einem Chart abbilden, um die Marktbewegung zu glätten und ein besseres Gefühl für die Stimmung des Marktes zu erhalten. Die Verwendung von Moving Averages kann eine große Hilfe sein, um die Richtung des Trends zu bestimmen oder um mögliche Unterstützungs - und Widerstandswerte zu zeigen. Hier ist ein Tages-Chart der EURUSD mit einem 200-Tage Simple Moving Average aufgetragen. Wir können zwei Dinge mit dem Diagramm sehen. Die erste ist, wie der Markt hat eine Tendenz zu finden, Unterstützung oder Widerstand auf einen Zug zum Moving Average. Diese beiden Punkte werden durch die grünen Markierungen in der Tabelle vermerkt. Also, wenn wir Pullbacks in einem Aufwärtstrend oder Verkauf von Rallyes in einem Abwärtstrend kaufen. Die Verwendung eines Simple Moving Average kann uns helfen, unsere Zeit zu verbessern. Wir können auch sehen, die Preisaktivität, die ich im Rechteck hervorgehoben habe, als ein gutes Beispiel dafür, wie Moving Averages kann eine große Hilfe bei der Festsetzung starken Trendbewegungen sein. Drei Gegenstände arbeiten zusammen im abgepackten Bereich. - Der EURUSD ging auf. - Der Preis des EURUSD lag über dem 200-Tage-Simple Moving Average. Auch der Moving Average stieg. Wenn Sie alle drei Punkte zur gleichen Zeit wie die Aktivität im Rechteck arbeiten, haben Sie eine starke Trendbewegung. Wir wollen in einem Aufwärtstrend kaufen und in einem Abwärtstrend verkaufen. Diese einfache technische Indikator hat eine Menge Wert es todayrsquos Handelsumfeld, aber wir müssen nur sicher sein, wir verstehen seine Stärken und Schwächen, um besser beurteilen, seine Wirksamkeit. Zusätzliche pädagogische Ressourcen --- Geschrieben von Jeremy Wagner, Lead Trading Instructor, DailyFX Ausbildung Kontakt Jeremy, E-Mail jwagnerdailyfx. Folgen Sie mir auf Twitter bei JWagnerFXTrader. Um in die E-Mail-Verteilerliste von Jeremyrsquos aufgenommen zu werden, senden Sie eine E-Mail mit der Betreffzeile ldquoDistribution Listrdquo an jwagnerdailyfx. DailyFX bietet Forex-Nachrichten und technische Analysen zu den Trends, die die globalen Währungsmärkte beeinflussen.
No comments:
Post a Comment